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The field of an acoustic transducer in the region of detection of an ultrasonic wave beyond the near zone is
considered as applied to nondestructive check of the surface density of foil-film materials by the method of
their irradiation with an ultrasonic wave through air. The results obtained refine the existing concept of the
pressure distribution on the surface of an acoustic cylinder in the intermediate and far zones of the field.

One promising physical method of automated check of the surface density of foil-film materials moving in the
technological flow is based on their direct irradiation with an ultrasonic wave through air [1, 2]. The field which is
traversed by the checked material is produced in air by an acoustic transducer (radiator) (AT) of long-duration ultra-
sonic pulses. The pressure of the wave transmitted by the material is perceived by the detector, which is coaxial with
and similar to the acoustic transducer. The pressure, averaged over the cross section of the acoustic cylinder (whose
base is an acoustic transducer of radius a), serves as an informative signal of the checked parameter of the irradiated
material. Its pattern is determined with account for the axial P(0) (on the axis of the acoustic transducer) and boundary
Pa pressures on the surface of the cylinder with diameter 2a.

An approximate formula of the axial pressure of the acoustic transducer is given in [3–5]. A more exact so-
lution of the wave equation for P(0) [6] has the form

P (0) = P0 



1 − 

z + rm

2rm
 exp (− iϕP)




 exp (− ikz) , (1)

where P0 = ρcvn, k = 2π ⁄ λ, rm = √z2 + a2 , and ϕP = k(rm − z). According to formula (1), the field on the axis of the
acoustic transducer is characterized by the presence of the pressure minima and maxima, the last of which is at a dis-
tance of

znear = a
2 ⁄ λ (2)

from the acoustic transducer.
It is customary to term the region z = 0−znear the near-field zone. The wave transmitted by the material is

usually detected in air at a distance of one to three times znear from the acoustic transducer.
Until recently, the wave pressure beyond the near-field zone at some point Q, which is at a distance q from

the axis of the acoustic transducer, had been determined [4] in terms of the Bessel function of first order J1 as Pq =

iP0
πa2

λrm
 
2J1(εq)
εq

, where the argument εq = kaq/rm. On the surface of the acoustic cylinder, q = a and the pressure on

the surface is

Pa = iP0 J1 




ka
2

rm




 . (3)

The proximity of this expression is obvious from the fact that for arguments equal to the roots of the Bessel function
Pa vanishes, which is consistent with experimental data [5] Consequently, a more accurate (than (3)) determination of
the considered pressure is necessary.
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The general solution of the wave equation for pressure Pq at the point Q of the field of the piston acoustic
transducer [6] in the function of the potential

ψ = 
1
r

 exp (− ikr) (4)

of point sources has the form

Pq = 
P0

4π
 ∫

S
∫ 

ikψr − z 

∂ψ
∂r




 
dS
r

 . (5)

We place the origin of the coordinate system (z, ρa, α) on the projection Q1 at the edge of the acoustic transducer
(Fig. 1). The distance r between the points of radiation A and detection Q is related to the radius vector ρa of the
point of radiation by the relation r2 = z2 + ρa

2, the differentiation of which yields rdr = ρadρa and correspondingly dS
= ρadρadα = rdrdα. In the selected coordinate system, the integration variable α changes from −π ⁄ 2 to π ⁄ 2, the ra-
dius vector ρa of the point A at the center of the radiation element dS changes from 0 to ρe = 2a cos α, and corre-
spondingly, the integration variable r changes from z to

re = √ z2 + 4a2 cos2α  . (6)

With account for this fact and for the quantity ikrψ = −
∂
∂r

 (ψr) obtained from differentiation of (4), from the general

solution (5) there follows the expression for the pressure on the surface of the acoustic cylinder

Pa = − 
P0

4π
   ∫ 
−π ⁄ 2

π ⁄ 2

 dα ∫ 
z

re ∂
∂r

 [ψ (r + z)] dr = 
P0

4π
   ∫ 
−π ⁄ 2

π ⁄ 2

  



2 exp (− ikz) − 




1 + 

z

re




 exp (− ikre)




 dα

or

Pa = 
P0

2
 exp (− ikz) − Pd , (7)

where the first term is half the pressure of the plane wave of direct radiation and the second term is the diffraction
pressure interfering with direct radiation:

Fig. 1. Schematic of the piston acoustic transducer.
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Pd = 
P0

2π
  ∫ 

0

π ⁄ 2

 

1 + 

z
re




 exp (− ikre) dα . (8)

For distances z from the acoustic transducer which exceed the length of the near-field zone, it is expedient to
represent re determined from (6) as

re = r0 √1 + n cos β  , (9)

where β = 2α, r0 = √z2 + 2a2 , and n = 2a2 ⁄ r0
2.

In expanding in a series, in the exponent index of the integrand in (8) we consider three terms of the series

kre = kr0 √1 + n cos β  = kr0 



1 + 

n
2

 cos β − 
n

2

8
 cos

2
 β




instead of two.
Upon the substitution cos2 β = 1 − sin2 β we obtain

exp (− ikre) = 



exp (− ikre) exp 




− i 

εn
4

 sin
2
 β







 , (10)

where ε0 = kr0



1 − 

n2

8



 and ε = 

n
2

 kr0 = 
ka2

r0
. In the required expansion of the second exponent in a series it is suffi-

cient to consider the first two terms of the series exp 



−i
εn
4

 sin2 β



 = 1 − 

εn
4

 sin2 β due to the smallness of the values

of the integrals with subsequent even powers of sin β. Since z ⁄ ze in (8) is a "slowly changing" function, we restrict

ourselves to consideration of two terms of the expansion series of this parameter:

z
re

 = 
z

r0 √ 1 + n cos β
 = 

z
r0

 − 
nz
2r0

 cos β .

With account for these expansions, the introduction of the integration variable β = 2α, dα = 
1
2

 dβ, and the limits of
integration for β going from 0 to π, expression (8) for the diffraction pressure is

Pd = 
P0

4π
 exp (− iε0) ∫ 

0

π

B exp (− iε cos β) dβ ,

where

B = 

1 + 

z
r0

 − 
nz
2r0

 cos β

 



1 − i 

εn
4

 sin
2
 β



 = 1 + 

z
r0

 − 
n
2

 




z
r0

 cos β + i 
ε
2

 

1 + 

z
r0




 sin

2
 β



 + i 

n
2
z

8r0
 ε cos β sin

2
 β .

According to the theory of cylindrical functions [7], we have

 ∫ 
0

π

exp (− iε cos β) dβ = π J0 (ε) ,   ∫ 
0

π

exp (− iε cos β) dβ = − iπ J1 (β) ,

ε ∫ 
0

π

exp (− iε cos β) sin
2
 βdβ = π J1 (ε) ,   ε ∫ 

0

π

exp (− iε cos β) cos β sin
2
 β = − iπ J2 (ε) . 
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Consequently, the diffraction pressure is

Pd = 
P0

4
 exp (− iε0) 








1 + 

z

r0




 J0 (ε) − i 

n

4
 



1 − 

z

r0




 J1 (ε) + 

n
2
z

8r0
 J2 (ε)




 . (11)

Here the coefficients of J1(ε) and J2(ε) beyond the near-field zone (when z ≥ znear) are much less than unity in mag-
nitude. Therefore, the last two components of the diffraction pressure in (11) can be neglected and

4Pd = P0 
z + r0
4r0

 J0 (ε) exp (− iε0) . (12)

Thus, according to (7), the pressure on the acoustic cylinder beyond the near-field zone is

Pa = 
P0

2
 



1 − 

z + r0

2r0
 J0 (ε) exp (− iϕP)




 exp (− ikz) , (13)

where the phase is

ϕP = ε0 − kz = k (r0 − z) − 
n
4

 ε . (14)

The dependence of the pressure modulus for the acoustic transducer with the most often used wave parameter
ka = 16 on the reduced distance z ⁄ znear is given in Table 1 compared to the values calculated from the approximate
formula (3).

It is obvious from the data of the table that, in contrast to the axial pressure determined from (1), the pressure
on the cylinder still experiences oscillations beyond the near-field zone, thus reaching the last minimum at z =
1.592znear and the last maximum at z = 3.468znear; then, with further increase in z ⁄ znear, the pressure decreases mo-
notonously. By virtue of this, the two-zone (near and far zones) gradation of the field can be supplemented with the
intermediate zone of the field lying between the last maxima of pressure: on the axis and on the acoustic cylinder of
the acoustic transducer (when z ranges from znear to 3.5znear).

The pressure obtained according to the approximate formula (3) from [4] is sharply understated in the first
portion of the intermediate zone and overstated in the second portion of it, thus approaching, as is clear from ∆P ⁄ P0
in the table, the values obtained in the far field according to (13).

The dependence (13) obtained in the present work can be assumed to be a refined solution of the wave equa-
tion of pressure on the acoustic cylinder in the intermediate and far zones of the transducer field.

TABLE 1. Calculated Dependences of the Pressure Moduli on the Acoustic Cylinder  Pa ⁄ P0  on the Reduced Distance
z ⁄ znear According to the Refined (13) and Approximate (3) Formulas for the Transducer with ka = 16

z ⁄ znear

100⋅ Pa
 ⁄ P0  according to:

100 ⋅ 
∆P
P0

z ⁄ znear

100⋅ Pa
 ⁄ P0  according to

100⋅
∆P
P0

 
(13)




J1




ka2

rm









(13)



J1




ka2

rm









1 48 30.3 – 1.73 3.468 56.3 58.1 1.8

1.166 53.3 34.6 – 1.87 4 55.3 56.5 1.2

1.592 33.3 0 – 33.3 5 50.2 51.1 0.9

2 36.8 30.7 – 6.1 7 40 40.4 0.4

2.505 50 50.2 0.2 10 29.7 29.8 0.1

3 55.2 57 1.8
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NOTATION

a, radius of the acoustic transducer; c, velocity of propagation of ultrasound; dS, element of the acoustic-
transducer surface; dSe, surface element at the edge of the acoustic transducer; k, wave number; J0, J1, and J2, Bessel
functions; P and P(0), ultrasonic pressure and pressure on the axis of the acoustic transducer; P0 and Pq, pressure of
the radiated plane wave and at the point Q; Q1, projection of the point Q onto the surface of the acoustic transducer;
q, distance between the point Q and the axis of the acoustic transducer; r, distance between the points A  and Q; rm,
distance between the center of the detector and the edge of the acoustic transducer; re, distance between the point Q
and the edge of the acoustic transducer; S, radiation surface; vn, normal component of the vibrational speed of the
acoustic transducer; z, coordinate, projection of r onto the axis of the acoustic transducer; znear, length of the near-field
zone; α, angular coordinate; β, integration variable; ε, argument of the Bessel function; εq, phase argument; λ, wave-
length; ρ, density of the medium (air); ρa, radius vector of the radiation point; ρe, radius vector of the element dSe at
the edge of the acoustic transducer; ϕP, phase of pressure of the detected wave. Subscripts: a, acoustic; near, near-field
zone; e, edge; m, maximum; n, normal component; 0, zero value; d, diffraction.
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